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History of the power systems

AC transmission was first demonstrated at an
exhibition in Frankfurt am Main 1891

Drehstromiibertragung
Lauffen-Frankfurt

170 kW transferred 175 km from
Lauffen hydropower station to the
exhibition area at 13000-14700 V
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History of the power systems in Sweden

First 3-phase transmission system
installed in Sweden between Hellsjén
and Grangesberg 1893

voltage 9650 V, 70 Hz, 70 kW

First 400 kV system Harspranget
Hallsberg 1952

Series compensation introduced
1954
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Fundamentals of Electric Power

» Energy
- Ability to perform work, [J], [Ws], [kWh] (1 kWh = 3.6 MJ)

» Voltage
- Measured between two points [V], [kV]
- Equivalent to pressure in a water pipe

» Current
- Measure of rate of flow of charge through a conductor [A], [kA]
- Equivalent to the rate of flow of water through a pipe.
- Must have a closed circuit to have a current
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Direct Current (DC) / Alternating Current (AC)
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Why is AC used?

The two main factors that formed the power system

e Transformer (only works on AC)
¢ Robust and cheep motor (rotating flux)
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Alternating Current (AC)
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Reactive power (Q) flow — What is reactive power?

A mathematical description of the phase shift between voltage and current
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Reactive power (Q) flow — Why care?

Due to the presence of the reactive power, the system cannot be used up
to its thermal limit and its voltage variation limits
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Need for reactive power compensation for better utilization of the system
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Why three phase system?

» one | th h t
Three one phase system One three phase system
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generator

The lowest number of phases that could create a rotating electric field
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Three phase voltage and current
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Line-to-line phasors for the voltages
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Power — Rate of energy flow [W]
u(t) = 2U 5 cos(ar) Angle between voltage and current
i(t)=\EIRMS cos(at — @) p=p-a
Single phase | Three phase
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apparent power.

real power s=gp-

Power — Rate of energy flow [W]

iQstantaneous power

i’nstantaneous power
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(a) Current Lags Voltage

’instantaneous power

(b) Current and Voltage In-Phase
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(c) Current Leads Voltage

(d) Current and Voltage
Out-of-Phase by 90 Degrees
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Power — Rate of energy flow [W]

3-phase Power [W]
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Active/reactive power at sending end | Active/reactive power at receiving
Es end E,

Power flow
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Voltages at the ends of a transmission line (same phase)

Voltage

Phase Angle Difference () of Voltage Sinusoids at the Ends of a Transmission Line
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Time

1 (sending end)
2 (receiving end)
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s = 1 (sending end)

r = 2 (receiving end) Power flow
I= E -E, _ E, sm5+j E,—E, cosd =I,—jl Active/reactive power to
] P2 q2
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Reactive power consumption of
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Structure of the Electric Power System
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Power balancing

ELECTRICITY CONSUMERS

_— Source: Svenska Kraftnat
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What happens if the turbine power does not match
the load power?

Power balancing

turbine

Rload

ELECTRICITY PRODUCERS

j _r
dr — Tturbine gen Source: Svenska Kraftnat
Burbine = a)rT;urbine )
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2
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Electric energy consumption in Sweden
divided on different consumers 1970-2015
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Profile over the electric energy consumption in
Sweden for a typical summer day, winter day and the
highest consumption day 22th of December 2010
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Electric energy consumption for
households in Sweden (investigated 2007)
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Production planing

Pmax
Load curve

Peak load -
Gas turbines,
hydro, m.m.

Hydro, CHP

min

Base load: Nuclear, Renewables
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Total input energy to Sweden 1973-2015
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Installed peak power in Sweden, MWel
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Electricity production in Sweden, TWhel

TWh
80
70
60
50 —
Hydro
40 === (il and gas turbines
= CHP

=== Nuclear

20 ‘Wind
10
0
1960 1970 1980 1990 2000 2015

Source: Svensk Energi

Elaret 2015

CHALMERS

UNIVERSITY OF TECHNOLOGY

Solar Plant

Goteborg
Latitude 57.7°

200 m? of solar cells
Statistical cloudiness
Sun tracking

Power [kW]

il
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Solar cells 0.15 Time [Hour]

Efficiency:

Integrated power during 1 year
24 000 kWh
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Normalized electric production mix for
the Nordic countries
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Spot market price for 2015-03-27

ELSPOTPRICES  Elspot prices

Changes in the Norwegian bidding areas can affect which geographical area the city references refer to. Please see the area change log pd.
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The End

Do you have any questions?




